<Toray IR Seminar – No.5>

Research and Development Activities at Toray Industries, Inc.

- Business Expansion by Advanced Materials -

Oct. 14, 2004

Dr.Hiroaki Kobayashi Senior Managing Director, General Manager of R&D Division Toray Industries, Inc.

Organization of Toray Industries, Inc.

TORAY

1

R&D Expenditure and Personnel

TORAY

Main Action Points of "Project NT-II"

Launched new mid-term management issues "Project NT-II" in April, 2004

Developing innovative attitudes and ideas / Reinforcing corporate structure	From the " <mark>defensive</mark> " perspective	 Develop innovative attitudes and ideas (Revitalizing and Promoting CSR) Reinforce corporate structure (Strengthening global competitiveness) Reshape style of management 	Urging the "offensive" management with the "defensive" perspective
Expanding revenues and profits through business structure reform	From the "defensive" and "offensive" perspective	4. Reform corporate structure	Early achievement of 100 billion yen in consolidated operating income
	From the " <mark>offensive</mark> " perspective	 5. Expand advanced materials businesses 6. Expand and reinforce global No.1 businesses 7. Expand profits from businesses outside of Japan 	Major Drive to a Global, Highly Profitable Toray Group

Strengthening of Toray R&D

Toray R&D Advantages

2. Various kinds of specialists groups in many fields Ex: Polymers, IT-related products, pharmaceuticals and medical products, nano/biotechnology, etc.

3. Unified R&D structure

Utilizes Toray's collective strengths

4. Leading company in academia – industry – government collaboration Over 150 joint research projects and 31 national Attractive projects

5. Advanced analytical capabilities Close collaboration with Toray Research Center ★ Attractive products only come with innovative materials

Technology

Integration

Reinforcement Points

- 1. Speed-Up
- 2. Improve "efficiency", "effectiveness"
- 3. Strengthen basic / fundamental technologies

Achieve in "Expansion of Advanced Materials Businesses" project → Promotion of "SZ project"

NT-II

Promotion of "SZ Project"

R&D / Technology Development Structure of the **Technology Center**

[Priority Issue at Technology Center]

NT-II

Dynamic Management of R&D / Technology Development

- Create a scenario under central control by interlinking technology, production, and marketing from the early R&D stage
- Strategic management such as concentrating on the theme as a project for 1 to 2 years and returning it
- to the belonging division or department.

Creation of Advanced Materials

- 1. Development of Advanced Nanomaterials
 - Nanofibers
 Multi-nanolayer films
 Nanoalloy Polymers
 Carbon Nanotubes
- 2. Development of IT-related Materials

Circuit / Mounting Materials
Semiconductor-related Materials
FDP-related Materials
New Areas

3. Efforts in Environmental Areas

 Recycling-oriented Materials
 Environmentally Friendly Materials
 Global Warming Prevention Materials (Carbon Fibers Composite Materials)
 Resolution of Water Pollution Problem (Separation Membranes for Water Treatment)

Nanofibers

Various Forms of Nanofibers (Nylon, PBT)

Expanding Applications

High-performance Air Filters High-performance Fluid Filters Wiping Cloth Apparel of Quality Medical Substrates

Multi-nanolayer Films

Nanoalloy Polymers

Advanced Nanomaterials Carbon Nanotubes

Carbon Nanotubes (CNT)

CCVD (Catalyst-supported Chemical Vapor Deposition) Method Using Zeolites

Development of Semiconductor-related Materials

Development of Displays Materials

IT-related Circuit/Package/Module Materials Development Circuit and IC Assemble Materials

IT-related Circuit/Package/Module Materials Highly Dielectric / Hybrid Materials

High Dielectric Constant / Hybrid Materials

High Dielectric Constant Interlayer Insulating Material for Substrate-embedded Capacitor

IT-related Circuits / Mounting Materials Next Gen. Patterning Tech.

ORA

Next Generation Patterning Technology

Adopted semi-additive method, instead of subtractive method, which is useful for fine pitch Patterning

 Developed an innovative technology for flexible circuit manufacturing which controls dimensional change during patterning process

IT-related Display Material

Development of Display Materials

Materials Design / Coatings, Thin-film Formation / Photosensitization / Particle Dispersion / Processing Technology

Low Molecular Organic EL Luminescent Material

Organic EL Structure and Toray-developed Materials

Electron Transport Material: Toray-E Series enables low drive voltage and maintenance of high color purity

Red light emission materials Host: Toray-H Series Guest: Toray-D Series High color purity, high efficiency, and long life

Properties of Toray Organic EL Materials

TORAY

IT-related

Display Materials

Low Molecular Organic EL Luminescent Material

IT-related New Areas Development of Films

Development of Films

TORAY

'ORA

Organic Electronics

Expanded Application for Organic Electronic Materials

IT-related New Areas Direct Methanol Fuel Cells

Direct Methanol Fuel Cells

This work was supported by New Energy and Industrial Technology Development Organization (NEDO).

IT-related New Areas radio wave absorbing Paper

Development of radio wave absorbing new material in a paper-form Electromagnetic Environment Control Materials for the Ubiquitous network society

For Electromagnetic Environment improvement in a wide-range of Wireless Systems, including Wireless LAN and collision warning/avoidance radar systems

- Environmentally Friendly Materials
- Global Warming Prevention Materials (Carbon Fibers Composite Materials)
- Improving Water Pollution
 (Separation Membranes for Water Treatment)

Toray is developing Non-petrochemical Raw Materials using Biotechnology

Flexible Polylactic Acid Film

Featured on front-page of Nikkei Shimbun (7/3/04)

First in World to succeed in developing Fully Biodegradable Flexible Films made of Environment-friendly Plant-based Polylactic Acid (PLA: Polylactic Acid)

Toray will continue to create Advanced Materials in the area of Environmentally Friendly Materials

Global Warming Prevention Expansion of its Applications Composite Materials Industrial use Aircraft 30,000 **Sporting goods** ×FA Carbon fiber demand (Tons/year) Offshore oil field components 20,000 **Windmills Automotive components** Large structures PC chassis 10,000 **CNG** tanks Aircraft structural components Golf club shafts **Tennis rackets** 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Forecast of the Carbon Fibers Market and the

Environment

Environment Global Warming Prevention Composite Materials

Improvement of Impact Resistance

Environment Global Warming Prevention Composite Materials

TORA

Expansion of Aircraft Application

Introduction	1982	1995	2008
Model	B767	B777	B7E7
Section using CFRP	Secondary structures	Primary structures (tail assembly etc.) Secondary structures	Primary structures (Main wings, tail assembly, and fuselage etc.) Secondary structures
CFRP utilization (wt%)	3	12	Approx. 50

* Orders received from Boeing: About 330 billion yen in 18 years Further business expansion through the creation of advanced materials

Environment Global Warming Prevention Composite Materials

Expansion of Automobile Applications

Weight Decrease Improved fuel efficiency -> Global warming countermeasure

> Improved impact safety (propeller shaft) Impact energy absorption

Reduced assembly processes/cost Modularization by integration

Improved running performance (propeller shaft) Improved oscillation-damping/ increased eigenfrequency

Improved safety Improved materials' fatigue properties

TORA

CFRP Application Sections and Weight Reduction

Figures in parentheses are comparisons with steel components, except for rear spoiler, which is compared with ABS resin

*"Innovative Global Warming Countermeasure Technology Program" (METI: 2003 to 2007) 30

OR A

New Developments in Water Treatment Business

Evolution of Membrane Separation Technology Toray's Technology Strengths 1990 2000 Membrane **Market Demand** Area Low-pressure **Control of** Ultra Pure 1.0 MPa 0.5 MPa Operation Water Nano-porous **High Recovery** structure 40% 60% Seawater RO rate Desalination High boron removal Desalination **90%→ 95%→ 99%** Plants rate Surface Wastewater **Modifications** Low Fouling Innovative Low Fouling Reclamation Improved UF (PAN) MF (PVDF) Tap water UF Durability **High-Durability** & Torayfil* -F Innovative Low Fouling -> **Polymers** Low Fouling Wastewater Hollow fiber MF MBR -Zero emission Reclamation membrane module **Zero Emission MBR Enhancement of Toray Group Water Treatment Business** -Basic materials (membrane elements Toray Toray and modules) business

Improving Water Environment Preservation of sustainable water resources Membrane Separation Technology for Water Treatment

Toray's Membrane Separation Technology for Water Treatment

Strengthen Competitiveness by Development of High-performance RO Membrane

Efficient removal rate of boron (element known to kill citrus trees and cause infertility)

Enhancement in the Life Science Area

R&D Strategy for Innovative Drugs

Genome / Proteome Research Strategy

Development of Next Generation DNA Chip

Life Sciences Drug Development

R&D Strategy for Innovative Drugs

Genome / Proteome Research Strategy

Life Sciences

Genome / Proteome

Development of Next Generation DNA Chip Next Generation DNA Chip

Featured on front-page of Nikkei Shimbun (9/17/2004)

Life Sciences

* A part of this research is sponsored by NEDO "Bio-IT Integrated Device Development Project."

Step-up of R&D Innovation

Creation of Big Themes

Creation of Original Technologies (Strengthening Technical Capabilities)

Constantly pursuing unique, new technologies and new sources for technology

Collaboration with Venture		Collaboration with leading domestic / overseas venture companies in	
Companies		advanced materials businesses	

Ventures	Area	Target Technology	Goal of Collaboration
Company A (Germany)	Pharmaceuticals	Computerized screening and drug evaluation of drug candidate compounds	Search for drug candidate compounds in genome drug discovery

Strengthening collaboration with outside organizations overseas influential universities and utilization of national projects

Example: RIKEN's Integrated Collaborative Research Program with Industry

- Team name:Integrated Materials Research Laboratory
- Research topic: Fundamental research on optical properties of composites containing nanoscale materials and Application for advanced textiles and films
- Research term: 4 to 5 years

Establishment of challenging themes

Challenge the subjects that will greatly contribute to our businesses and operations even if the technological hurdles are quite high.

TORAY

Strengthen Intellectual Property Capabilities

- Registrations in past 5 years : 650 to 900
- Focus on improving quality in the future

TORA

Personnel Acquisition and Training/Revitalization

- Personnel must be acquired and trained to strengthen development capabilities
- Increase employment of capable experienced staff in development units of new business areas

(1) Research/Technology Specialist System

- Duty, qualification, and position system
- Promotion review for research specialists

(2) Research Fellow System

- Clear indication of researchers who are the model of specialists
- Creation of a culture devoted to research
- Creation of a culture where young researchers work hard to become specialists

(3) Director for specialty field, Senior Director/

Senior Director for specialty field System

- Advanced specialists in their field

(Equal to divisional director or equivalent effects/contributions expected)

Currently certified research fellows*

Year Author- ized	Specialty	Lab Affiliation
1999	Functional polymers	Functional Materials Research Laboratories
2002	Genome drug development	Pharmaceutical Research Laboratories
2003	Medicinal chemistry	Pharmaceutical Research Laboratories
2004	Polymeric structural design	Films & Films Products Research Laboratories
2004	Polymeric materials design	New Frontiers Research Laboratories
2004	Electronic materials properties	Electronic & Imaging Materials Research Laboratories

* Research specialists only (Certified by annual review)

Management culture that encourages employees to strive to become advanced specialists

Strengthening R&D Activities in China

<Basic Concept>

- Research, technological development and support for our businesses in China
- Basic polymer research by high-level Chinese researchers
- Promoting collaborations with Chinese universities and government research laboratories
 - → Utilizing an open lab in Shanghai Branch Labs

Nantong R&D Center

Shanghai Branch Labs.

<Organization>

TORAY

Speed-up with SZ Project

