

<5th IT-2010 IR Seminar>

Expansion Strategy of Water Treatment Business

19th December 2008

Toray Industries, Inc

Executive Vice President and General Manager of Water Treatment & Environment Div. Akihiro Nikkaku

> General Manager of Water Treatment Div. Hideo Sato

Contents:

<u>1</u>. Global Water Environment and Toray's Activity

- 2. Toray's Water Treatment Business
- 3. Reverse Osmosis (RO) Membrane Business
- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)
- 5. Hollow Fiber UF/MF Membrane Business
- 6. IMS (Integrated Membrane System)
- 7. Expansion Plan of Water Treatment Business

Global Environmental Issues: Co2 and Water

'TORAY' Innovation by Chemistry

Toray's Approach toward Global Water Environment Issue

<u>Global Environmental Issue: Water became a focus at World Economic Forum 2007</u> (Commonly known as: Davos Conference)

Jan 25,2007,Davos: Toray co-sponsored Special Japanese Sushi Reception 2007 , which was hosted by Japan Water Forum (JWF)

The 1st Asia Pacific Water Summit (Beppu, Japan): Organizer: APWF(JWF)

Dec.3-4, 2007, Beppu: Toray attended at CEO PANEL and made the presentation titled "Membrane Technologies meet to the Solution of the Subjects on the Global Water Environment "

Toray attended the Liberal Democratic Party research group on water security

Mar.23, 2008, Toray made a report on "Approach to Rapidly Growing Global Water Business Market" as one of the major members of Council on Competitiveness-Nippon (COCN)'s "Technologies for Effective Utilization of Water Treatment and Water Resource Project"

Toray participated in Singapore International Water Week

June 23-27, 2008, Singapore: Toray gave a keynote speech at Japan Business Forum. Theme: "Global Market Trend on Advanced Water Treatment and Japanese Contribution by Technology"

Present Situation of Water Resource

*World population is 6.5 billion

1.1 billion people cannot access to good drinking water (including water for daily life)

2.4 billion people do not have sanitary accommodations (wastewater and human waste treatment)

Present water situation in the world (Source: IWMI Report 2006)

Areas of physical and economic water scarcity

Global "Water shortage" is the keenest issue,

it is expected to become even more serious.

Contents:

1. Global Water Environment and Toray's Activity

<u>2. Toray's Water Treatment Business</u>

- 3. Reverse Osmosis (RO) Membrane Business
- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)
- 5. Hollow Fiber UF/MF Membrane Business
- 6. IMS (Integrated Membrane System)
- 7. Expansion Plan of Water Treatment Business

Position of Water Treatment Business in Toray

AX² has exacting here Champions

Organization of Toray's Water Treatment Business

Increase of World Population and Development of Water Treatment Technologies

Difficult to secure quantity and quality of water only by natural purification due to the rapid increase of population

Membrane technology, which enables precise control of water quality and high speed treatment, is essential in 21st century

History of Toray Membrane Technology & Water Treatment Business						
Period	~ 1960	~ 1970	~ 1980	~ 1990	~ 2000	2001 ~
RO/NF Membrane	♦1953 USA lau	 nched RO conc 1960 J.F. Kennedy m on a seawater d *Next year, in 19 to approve a sea as a national unc President. 	968 Started Res ept. ade a speech esalination. 61, he decided water desalinatio lertaking as the	earch on RO M 1980Started n ultra pur Installed in a lan Installed in a	embrane harketing RO M e water plants	embrane for 6 er desalination plant 2001 desalination plant 2003 ne world's largest reuse plant
Hollow Fiber UF/MF Membrane			I	Sta Sta Started t nstalled in the la	1990 rted research rted research rial marketing o rgest membran	on UF membrane 2000 on MF membrane 2002 n MF membrane 2007 e plant in Japan
Submerged Membrane for MBR				Start Insta	ed research or Started tri lled in a large pl	996 MBR • 2003 al marketing • 2008 ant in Middle East

Types of Membranes and Toray's Membrane Products

Membrane Manufacturers in the World

[Investigated by Toray]

		RO	NF	UF	MF	MBR
Overseas	DOW (US)	 Filmtec	 Filmtec		Omex	Omex
	Koch (US)			Abcor	O Abcor	O Puron
	General Electric (US)	Osmonics	Osmonics	Zenon		 Zenon
	Siemens (Germany)				Memcor	O Memcor
	Norit (Netherlands)			X-Flow		0
	Woongjin Chemical (Korea)	O Saehan	O Saehan			
	MOTIMO (China)			0	0	0
	Vontron (China)	0	0			
Japanese	Toray	0	0	0	0	0
	Nitto Denko	(Hydranautics) (Hydranautics) (Hydranautic	s) (Hydranautics)
	Mitsubishi Rayon				0	0
	Toyobo	0		0	Δ	
	Daicel Chemical	0		0		
	Asahi Chemical			0	0	0
-	Kubota					0

• :High share product •:product in the market •:under development **TORAY' Innovation by Chemistry**

Policy of Toray's Water Treatment Business

By utilizing superior membrane technologies and all variety of membrane products,

- Expand and Strengthen global sales system
- Strengthen profit structure by arrangement of production systems and increasing production capacity

Become "Number One" of the Membrane Business by 2010.

Rapid Expansion of Global Water Issue and Water Treatment Market

Toray's Business Expansion Strategy Solution of both water quantity and quality (Boron and Arsenics) is necessary for countermeasure of Global Water Issue. Our targets are drought areas of the world.

1 . Middle East/North Africa region is the most expanding market. Toray has a good track record and continue to focus the market.

2 . As for the USA, Toray has established local production facility already. Toray attacks this World's 2nd largest market

3 . Australian market has just taken off. Toray started strategic sales in this market.

4 . China is the largest potential market in the world, and Toray will expand the business in the country by new business structure.

For achievement of above, Toray strengthens Global Sales Team and production capacity.

Toray Water Treatment Global Sales Team

Global Network Led Success at Shoaibah Project

In case of large scale project, the operation is proceeded in the form of combining multiple companies playing their role, therefore it is essential to approach to each one of them.

Even though the location of this project was KSA, the related companies were operating world wide: (a) Technical advisor (UAE), (b) Developer & Operator (KSA),(c) Investor (KSA), (d) EPC & Design (Korea and USA) and others.

Toray's Global Sales Team reacted well to this circumstance, and played their part in their region keeping good mutual coordination, which resulted in winning this project.

Establishment of Joint Venture in China-1

日中協力案件調印式

28th November, 2008 Signing Ceremony of TBMC JV Agreement

Establishment of Joint Venture in China-2

Outline of Toray BlueStar Membrane Co., LTD. (TMBC)

- 1. Main businesses: Manufacturing, sales, application development and technical service of the following water treatment membranes as well as their export and import.
- (1) RO membrane and RO membrane element
- (2) NF membrane and NF membrane element
- (3) Submerged MF/UF membrane element
- (4) Submerged module of MF flat sheet for MBR
- 2. Location: Beijing, China
- 3. Established: May 2009 (scheduled)
- 4. Capital: 35 million USD (about 3.5 billion yen)
- 5. Investment ratio: Toray Industries, Inc. 40.1%

Toray Industries (China) Co., Ltd.

(a Toray subsidiary)-

10.0%

China BlueStar & BC group Co., Ltd- 49.9%

- 6. Production facility: RO membrane production facilities Auto winders for RO element
 - * Beginning of construction: May 2009 Start of operations: April 2010 (expected)
 - * Location: Industrial development area of Shunyi Airport in Beijing
 - * Capital investment for new plant construction: about 500 million CNY (about 7.5 billion yen)

< Background of this JV Establishment >

"<u>Jieneng Jianpai</u>" (Save Energy& Emissions-Reduction) and "<u>Ling Paifang</u>" (Zero-Emission) Policy of China Gov.

For realizing this policy, Wen Jiabao instructed BlueStar to establish "Stateclass Water Treatment Company" urgently

BlueStar approached Toray since Toray developed all kinds of water treatment membranes by herself.

• China is a huge growing market for water treatment, and annual growth ratio of RO market exceeds 20% in China.

- •Toray can contribute to environment improvement in China.
 - (Meeting Toray's Corporate Philosophy)

China Business Development of Toray's Water Treatment (Main Awarded Projects)

Expansion of RO Production Capacity

For RO membrane production, Toray established the Japan-U.S. production capacity by the end of fiscal 2007 in order to meet rapid demand increase. From 2008 onward, Toray produce all the RO elements by its leading-edge automatic winder.

As a result of above, production capacity of RO elements is increased, <u>Ehime: 2 times and San Diego: 4 times, as a total: 2.7 times as much</u> <u>the capacity of March 2007.</u>

In addition to above, it will be expanded <u>4 times as much as the</u> capacity of March 2007 when TBMC started its Production.

Contents:

- 1. Global Water Environment and Toray's Activity
- 2. Toray's Water Treatment Business

3. Reverse Osmosis (RO) Membrane Business

- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)
- 5. Hollow Fiber UF/MF Membrane Business
- 6. IMS (Integrated Membrane System)
- 7. Expansion Plan of Water Treatment Business

RO (Reverse Osmosis) Membrane

Features of Evaporation Methods and Membrane Method

RO Membrane for Seawater Desalination: Technology Progress and Desalination Cost Reduction

RO method is introduced to global water stress area as key process of desalination technology by Its technology progress and cost reduction.

Development of High Boron Rejection RO Membrane

By quantifying sub-nanometer (1/10 nanometer or 1/1 billion meter) pore size distribution of RO membrane for seawater desalination, Toray Group has become the first substantiator of correlation between rejection ratio of Boron, hazardous material, and pore size distribution in the world. Based on this information, Toray has succeeded the development of "High Boron Rejection RO Membrane", of which sub-nanometer pore size is controlled by Toray's original polymer designing technology.

Received Nikkei Global Environmental Technology Award

- 1. Pore-size control technology of RO membrane by using nanotechnology
- 2. High Boron rejection membrane developed by the technology

In recognition for these technologies, Global Environmental Lab. of Toray received the 18th Nikkei Global Environmental Technology Award.

Toray's Supply for Large Seawater Desalination Plants

1

0000

					as of October 2008
No.	Country	Location	Capacity *1 m ³ /d	Operation Year *2	Notes
1	Algeria	Hamma	200,000	2008	
2	Saudi Arabia	Shuaibah	150,000	(2009)	
3	Trinidad & Tobago	Point Lisas	136,000	2002	
3	Singapore	Tuas	136,000	2005	
3	UAE	Fujairah 2	136,000	(2010)	
3	Kuwait	Shuwaikh	136,000	(2010)	
7	Algeria	Oued Sebt	100,000	(2010)	
8	Israel	Palmachim	92,250	2007	
9	Saudi Arabia	Al Jubail-III	90,909	2000	*3 : 24,240 m3/d
10	Spain	Mallorca	69,300	2001	*3 : 23,100 m3/d
11	Spain	Alicante	65,000	2002	expansion: 15,000m3/d (2006)
12	UAE	Dubai	64,000	(2008)	
13	Nambia	Swakopumund	55,000	(2008)	
14	Malta	Ghar Lapsi, etc.	53,500	(2008)	replacement for three places
15	Saudi Arabia	KAUST	40,000	(2009)	
15	Japan	Okinawa	40,000	1997	*3 : 30,000 m3/d
17	Qatar	The Pearl	35,000	(2008)	
18	China	Yuhuan	34,600	2006	*3 : 11,500 m3/d
19	Saudi Arabia	Jeddah	32,000	(2009)	
20	China	Zhoushan Is.	31,850	2006	
21	Oman	Qarm Aram	25,000	(2008)	
22	Spain	Maspalomas-II	22,000	1994	*3 : 19,000 m3/d
22	Spain	Adeje Arona	22,000	1997	
24	Spain	Bahia de Palma	21,000	1999	
24	Spain	Teneriffe	21,000	2002	
26	India	LANCO	16,500	(2009)	
27	St. Marteen	St. Marteen	15,000	2008	
28	China	Zhuanghe	12,700	(2008)	
29	Netherlands Antilles	Curacao	11,400	2000	
30	Saudi Arabia	Jeddah	10,000	(2009)	
30	South Africa	Mpumalanga	10,000	2008	
30	Cyprus	Famgusta	10,000	(2009)	
(Notes)	*1 Total output of all units				=Aquired projects for last 2 years.

*2 The year in which the plant was commissioned, () shows a project

*3 Toray's initial installation

Toray's Cumulative Capacity for Seawater Desalination (Product Water Basis): 2,800,000 m3/day (Top Share in the World)

The Largest Seawater Desalination RO Plant in Africa (Hamma, Algeria)

Seawater desalination plant constructed close to Alger, the capital city of Algeria. (Capacity : 200,000m3/day Online: Feb. 2008)

Largest Seawater Desalination RO Plant in Western Hemisphere (Point Lisas, Trinidad &Tobago)

Trinidad & Tobago, the Caribbean Sea, Seawater Desalination Plant (Capacity: 136,000m3/d, Online: 2002) **TORAY' Innovation by Chemistry**

Development of Low-fouling RO for Wastewater Reclamation

Toray Acquires Large Scale Wastewater Reclamation Projects

No.	Country	Location	Capacity (m3/d)	Operation Year	
1	Kuwait	Sulaibiya	320,000	2005	
2	Singapore	Changi	228,000	(2009)	
3	China	Ningxia	78,000	(2008)	
4	Australia	Luggage Point	66,000	(2008)	
5	China	Tianjin TEDA	30,000	2006	
6	China	Dongguan	25,000	2005	
7	Singapore	Seletar	24,000	2004	
8	China	Tianjin Dongjiao	12,000	(2008)	
			=Acquired Projects for Last 2 year		

Toray's Cumulative Capacity for Wastewater Reclamation (Product Water Basis): 1,000,000 m3/day (Top Share in the World)

World's Largest Wastewater Reclamation Plant : Sulaibiya (Kuwait)

Using Toray's low-fouling RO membranes Treated water is used for irrigation and industrial water. (Capacity: 320,000 m3/day, Online: 2005) **TORAY' Innovation by Chemistry**

Progress of Brackish Water RO Performance

Operating Pressure normalized by Flux (MPa/(m³/m^{2//}/d))

Improvement of membrane materials and manufacturing technology realized the development of super ultra low pressure membrane with high salt rejection and lower operating pressure

World's most advanced

Membrane for Energy-saving

The Largest Brackish Water Desalination Plant in East Asia (Korea)

Brackish Water Desalination Plant for Petrochemical Industry (Capacity: 84,000m3/day, Online: 1997)

Toray RO Membrane Elements Sales Volume by Usage (Trend of Cumulative Shipping Volume)

[As of Nov. 2008]

(Unit: 10 thousand m3/d)

Total Shipping Volume:14,000,000 m³/d (Equivalent to water for 60,000,000 people)
New Products-1: 16-inch RO Elements

1. Advantages of 16-inch RO element

Autowinding production realizes <u>Stable</u> element quality and <u>Large membrane area</u>

These features will allow Lower Capex and Opex (abt. 15-20% down) and Smaller foot print (abt. 15% down).

2. Product line up

Full line up of RO Membrane elements:Brackish Water Desalination:TM740-160Low Fouling:TML40-160Seawater Desalination:TM840-160

16-inch element (left) and conventional 8-inch element

New Products-2: Food and Beverage

- Application Target at present is Dairy: Condensation of whey or milk protein In the future, will develop condensation of juice or other food & beverage application
 - Market USA, New Zealand, and Europe

Features

Membrane

Variation

Good protein rejection And excellent permeability (= difficult to clog)

<Pursuit of High Profitable Application>

Shape of elements

Summary of RO Membrane Market

Asia and Middle East are predicted to expand by regional factors while seawater / brackish water desalination and wastewater reuses are expected to expand by application. Toray develops them by Global Sales Team.

Expansion Strategy of RO Membranes

- Expand business utilizing
 - high performance membrane
 - Seawater desalination application
 - (high boron rejection membrane)
 - Wastewater reuse (low-fouling membrane)
- Strengthen marketing competitiveness
 - Develop global marketing system
 - Strengthen engagement with major engineering-related companies
- Enlarge marketing area
 - Expand bases in USA, Europe, and Middle East
 - TBMC-based China Development
- Strengthen cost competitiveness
- Develop and commercialize new products

Contents:

- 1. Global Water Environment and Toray's Activity
- 2. Toray's Water Treatment Business
- 3. Reverse Osmosis (RO) Membrane Business

<u>4. Submerged Membrane Business for</u> Membrane Bioreactor (MBR)

- 5. Hollow Fiber UF/MF Membrane Business
- 6. IMS (Integrated Membrane System)
- 7. Expansion Plan of Water Treatment Business

Wastewater Treatment: Conventional and MBR Method

Conventional Activated Sludge Method (ASM)

Membrane Bioreactor

Feature of MBR

	Process	Effluent Quality	Maintenance	High concentration Sludge		Small Footprint	
	ASM	not good	not good	poor	excellent	poor	
4	MBR	excellent	good	good	good	excellent	42

Toray Submerged Membrane Module for MBR, "MEMBRAY" Series

<u>"TMR140-100a"</u> (100EL, 140m²)

Footprint Comparison: ASM v.s. MBR (capacity: each 5,000m3/d)

MBR Membrane Module Manufacturers

	Α	В		С	Toray
Membrane	Hollow Fiber	Hollow Fiber		Flat Sheet	Flat Sheet
Material	PVDF	PE	PE PVDF		PVDF
Pore Size	0.04 µm	0.4	0.4 µ m		0.08 µm
Module Type					TMR140- 200D
Membrane Area	67 m ²	210 m ² 500 m ²		320 m ²	280 m ²
		Required			
Cleaning	Required	Requ	uired	Not Required	Not Required

MBR Flat Sheet vs Hollow Fiber Membrane

Membrane Type	Flat Sheet	Hollow Fiber		
Membrane & Module	Flat Sheet	Hollow Fiber (ross section)Hollow Fiber Hollow FiberHollow Fiber Module		
Merits	 Effective clean up with scouring air Less pressure loss (Operate with gravity) Higher flux Easy maintenance 	 Large membrane area per footprint Backwash cleaning 		
Demerits	- Small membrane area per footprint - Difficult to apply backwash	 Fouling with SS (Inter-fiber fouling) Frequent chemical cleaning (every week) Small screen net size for pretreatment (1mm opening or smaller) 		

Filtration Principle of Flat Sheet MBR

Design Concept of Membrane

Required Features of Membrane:

- High Physical and Chemical Durability
- Excellent Permeability
- Low Fouling and Easy to Clean

Flat Sheet Type:

- Reinforced by Polyester Non-woven Fabric
- Less Fouling and Easier to Clean than Hollow Fiber Type
- **PVDF (Polyvinylidine DiFluoride)**
 - Excellent Chemical

Durability

- Excellent Physical Strength

Cross-section of Membrane

Membrane Surface Structure and Its Feature

Ideal Membrane Surface Structure:

- Small Pore Size
- Narrow Pore Size Distribution
- Many Pores

Hydrophilic Dry Membrane

ltem	Toray	Type B
Average Pore Size [µ m]	0.08	0.4
Pure Water Permeability [10 ⁻⁹ m ³ /m ² /Pa/s]	40	30

Membrane Surface Structure Realizes Excellent Permeability and Low Fouling

Track Record Toray MBR Membrane Modules

Country	Application	Capacity (m ³ /d)
China	LCD WW	6,500
UAE	Sewage	38,000
UAE	Sewage	45,000
KSA	Sewage	30,000

Cumulative Capacity : 300,000 m³/d (130 plants) (as of Sept. 2008)

Pilot Test with Municipal Wastewater in Holland (sponsored by Dutch Government)

Pilot test started at Beverwijk WWTP in March 2003, cooperated with Seghers Keppel Technology Group (SKG).

Toray as Membrane Supply

SKG : MBR system design & plant operation

Pilot Test Results at Beverwijk WWTP

Toray's Flux is twice as large as other companies'

Al-Ain Fast Track MBR Plant (UAE) Sewage Reuse for Irrigation, Operation started in Mar. 2008

- Capacity : 15,000 m³/d (5,000 m³/d x 3 plants)
- Membrane Module : TMR140-200W x 72 units

MBR Plant Overview

TORAY Innovation by Chemistry

Location

Al-Ain Fast Track MBR Plant (UAE)

Process Outline

Water Quality (design value)

		Influent	Effluent	
TSS	mg/L	218	1	
BOD ₅	mg/L	231	10	
NH ₄ -N	mg/L	30	5	
Turbidity	NTU	-	1	

MBR Tank Design Picture

Heenvliet Hybrid MBR Plant (The Netherlands) Operation started in April 2006

- Model Plant EUROMBRA Project
- Application : Sewage Treatment
- MBR Capacity : 2,400 m³/d (Conventional Treatment : 7,000 m³/d)
- Membrane Elements : 3,000 pieces (4,200 m²)

Hybrid of Conventional Method and MBR Aeration tank

Sales Volume of Submerged Membrane for MBR (Trend of Cumulative Shipping Volume)

As of April 2008

MBR has rapidly increased its sales for waste water processing and reuse usage from 2006

Summary of MBR Market

Recently sewage treatment by membrane exceeds 75% of MBR market. Remains are industrial usage for factory wastewater treatment system.

[•]MBR market is growing more than 20% annually. China and Middle East are most increasing market.

 Wastewater reclamation system (IMS) projects with RO are increasing as environment-conscious method for obtaining water resource.

Expansion Strategy of Submerged Membrane for MBR

- Expand sales by utilizing high performance immersed membrane elements
- Win orders of large wastewater treatment projects (size over 10,000 m³/day)
- Strengthen marketability in Europe, USA, and the Middle East TMEu for Europe and ME, and TMUS for USA
- Increase production capability

Will increase capacity to 1 million m3/d by 2009 (equivalent to treated water basis)

Contents:

- 1. Global Water Environment and Toray's Activity
- 2. Toray's Water Treatment Business
- 3. Reverse Osmosis (RO) Membrane Business
- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)

5. Hollow Fiber UF/MF Membrane Business

- 6. IMS (Integrated Membrane System)
- 7. Expansion Plan of Water Treatment Business

Toray PVDF Large Size Module - Type : HFM/HFS/HFU-2020 -

Features

- Module Type : Pressured Type
- Filtration Method : Outside to Inside
- Membrane Area : 72 m²
- -Dimension : 216D x 2,160L [mm]

(The Largest Dimension and Membrane Area as 8-inch Module)

Advantages

- Stable Continuous Filtration
- High Filtration Flow : 110 260 m³/d
- High Chemical Resistance
- High Physical Strength and High Integrity

TORAY Innovation by Chemistry

Comparison of Hollow Fiber Membrane Modules

			В						
Company		Α		B-2	C	C)	Tor	ay
Membrane Material PP [·] PVDF(MF)		PVDF(MF)		PES(UF)	PVDF(MF)		PVDF(MF/UF)		
Filtration Mode	Р	S	S	S	Р	Р	S	Р	S
Pore Size (µm)	0.	04	0.04	0.02	0.01	0.1	0.1	0.1-0.01	0.01
Membrane Area(m ²)	15	25.3	67	36	57	50	25 [.] 50	72	25
Module Configuration							A A A A A A A A A A A A A A A A A A A		

*P=Pressure Type S=Submerged Type

Design Concept of PVDF Hollow Fiber Membrane

-NIPS: <u>Non-solvent Induced Phase Separation</u> -TIPS: <u>Thermally Induced Phase Separation</u>

PVDF hollow fiber MF/UF membranes

		M1	M2	M3	
Pore size or MWCO*		0.1 μ m 0.05 μ m ¹⁵⁰		150kDa (0.01 µ m)	
Pure water flux (m/h@100kPa)		2.4	1.6	0.8	
Membrane Structure		Symmetrical	Asymmetrical (C	Asymmetrical (Composite membrane)	
Suitable	Туре	Pretreated Water Clean Ground Water	River & I	Lake Surface Water	
	Turbidity (NTU)	~ 0.05	0.05 ~ 30	5 ~ 100	

*MWCO: Molecular Weight Cut Off

Most Suitable membrane can be selected to

meet the feed water quality.

Toray received the Society of Chemical Engineers, Japan (SCEJ) Technology Award for developing water purification process using PVDF hollow fiber membrane modules.

SCEJ selected Toray for this award because it rated highly Toray's superior membrane technology in water purification process, its economic advantages, and its contributions to environmental protection offered by its water reclamation and reuse system.

'TORAY' Innovation by Chemistry

Pilot Test Competition in Korea (Drinking Water Production)

Competition for Full Scale Project Test Term : Mar – Aug 2005 Participants: Toray, Company A, B

Toray is selected

as the most preferable supplier Most Stable Operation Least Electricity Consumption Highest Water Recovery

Supplier	Toray	А	В
Membrane Material	PVDF	PVDF	PVDF
Nominal Pore size (Micro-meter)	0.02	0.1	0.04
Filtration system	Pressurize / Dead-end	Pressurize / Cross-flow	Submerged / Suction
Membrane area (m ²)	72	50	31.6
Module		-	-

Track Record Toray PVDF Hollow Fiber Membrane Modules

The Largest Membrane Treatment Plant in Japan (Kinuta Water Works)

Recovery

Ratio

99.9%

New Products: Submerged PVDF Hollow Fiber Membrane Module (under development)

 Target Application : Drinking Water Production, RO Pretreatment of Seawater Desalination, Tertiary Treatment of Waste Water,
 Easture

2. Feature

Hollow Fiber UF/MF Membrane Modules Sales Volume (Trend of Cumulative Shipping Volume)

As of April 2008

MF/UF Membrane modules is expanding its sales in drinking water usage since 2006

Summary of Hollow Fiber Membrane Market

Main Market is N .America/Europe/ME. China/Asia/Australia shows rapid growth
 IMS demand is taking off such as pretreatment of SWRO and Wastewater reuse

Expansion Strategy of UF/MF Hollow Fiber Membrane

6%

- Expand sales by utilizing high performance membranes
 - Since our pressured type is the listed items of the international export control regimes, it takes time to export.
- **Enlarge marketing area**
 - North America, Middle East, China
 - Wastewater reuse, industrial water. large size seawater pretreatment
- Sales expansion in Japan and East Asia
 - **Cooperation with Suido Kiko and** Japanese engineering companies
 - Involvement in East Asia development project of drinking water treatment technologies
- **Increase production capacity**

Commercialization of new product TORAY Innovation by Chemistry

Contents:

- 1. Global Water Environment and Toray's Activity
- 2. Toray's Water Treatment Business
- 3. Reverse Osmosis (RO) Membrane Business
- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)
- 5. Hollow Fiber UF/MF Membrane Business

6. IMS (Integrated Membrane System)

7. Expansion Plan of Water Treatment Business

IMS (Integrated Membrane System)

Since Toray has all variation of membranes developed by own technology, Toray can provide the most suitable water treatment membrane system, and can realize the highest performance and cost reduction.

	Typical Process Flow		Actual Plant
Seawater	MF SWRO	BWRO	-Seto Inland Sea/Japan
desalination (SWRO)			(1,600m ³ /d:2004) -Dubai/UAE(64,000m ³ /d:2008)
	Pretreatment Desalination Boron Removal		
Wastewater	MF	RO	-Seletar/Singapore(24,000m ³ /d:2004)
reclamation			-Sulaibiya/Kuwait(320,000m³/d:2005)
(WWRO)	Pretreatment	Reclamation	-Changi/Singapore (228,000m³/d:2009)
	Wastewater MBR	RO	-Fuji Film/The Netherlands
	\rightarrow \rightarrow \rightarrow	$\cdot $	(1,080m³/d:2005)
	Biological Treatment	Reclamation	-Tirupur Textile/India(11,200m ³ /d:2008)
Water	MF/UF	MF/UF	-Kinuta/Japan (80,000m ³ /d:2007)
Purification	$ \rightarrow \square - $ Primary	→ → Recovery	

'TORAY' Innovation by Chemistry

Track Record of IMS

Toray has supplied membranes for 21 IMS plants in the world, and its total capacity exceeds 1.000,000m3/d. 10 plants of 21 IMS plants adopted Toray's membranes for all membrane process in the IMS plant.

٩,

=UF/MF+RO(Toray+Toray)
 =UF/MF+RO(Toray+Others)
 =MBR+RO(Toray+Toray)
 =MBR+RO(Toray+Others)

0

=UF/MF+UF/MF(Toray+Toray)

TORAY Innovation by Chemistry

SWRO Plant (IMS Case 1)

MF Pretreatment Unit (3,000 m3/d)

SWRO Unit (1600 m3/d)

'TORAY' Innovation by Chemistry

<u>Tirupur Textile WW Reuse Project (India)</u> (IMS Case 2) (Under construction)

- Industrial WW Reuse
- Product Water Output: 9,000m³/d
- Membrane Module : TMR140-100S x 128 units

(MBR Capacity:11,200m3/d)

- RO Elements: TML20-400 x 600pcs

TORAY Innovation by Chemistry

Contents:

- 1. Global Water Environment and Toray's Activity
- 2. Toray's Water Treatment Business
- 3. Reverse Osmosis (RO) Membrane Business
- 4. Submerged Membrane Business for Membrane Bioreactor (MBR)
- 5. Hollow Fiber UF/MF Membrane Business
- 6. IMS (Integrated Membrane System)
- **7. Expansion Plan of Water Treatment Business**

Business Plan of Toray's Water Treatment Business

Toray Receives 2008 Humanitarian Award from the United Nations Association of New York

The 2008 Humanitarian Award was in recognition for Toray's environmentally friendly business activities and CSR activities targeting climate change prevention and sustainable social growth.

Humanitarian Award from the United Nations Association of New York (UNA-NY)

Each year the UNA-NY presents Humanitarian Awards to corporations, individuals and organizations that have made significant contributions in specific fields. The theme for each year's awards is based on one of the eight Millennium Development Goals adopted at the United Nations Millennium Summit in 2000. Past recipients include UNICEF and the GE foundation. The theme of 2008 was "Environment and Climate Change". The other recipients this year were UN Secretary-General Mr. Ban Ki-moon, and Mr. Olafur Ragnar Grimsson, President of the Republic of Iceland.

Background for winning the award

TORAY'

In recognition for Toray's environmentally friendly business activities such as Water treatment business and carbon fiber composite materials for reducing global heating gas, as well as for CSR activities such as energy saving measures and betterment of workplace.

President Sakakibara with UN Secretary-General Ban Ki-moon, who was also an award recipient

Toray is committed towards fulfilling the role expected of it by the society, striving for the development of a recycle-oriented society that enables sustainable growth by exploiting cutting-edge technology and backed by the "power of chemistry". Descriptions of predicted business results, projections, and business plans contained in this material are based on predictive forecasts of the future business environment made at the present time. The material in this presentation is not a guarantee of the Company's future business performance.

